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Abstract

Whole organism or tissue profiling by vibrational spectroscopy produces vast amounts of seemingly unintelligible data.

However, the characterisation of the biological system under scrutiny is generally possible only in combination with modern

supervised machine learning techniques, such as artificial neural networks (ANNs). Nevertheless, the interpretation of the

calibration models from ANNs is often very difficult, and the information in terms of which vibrational modes in the infrared or

Raman spectra are important is not readily available. ANNs are often perceived as ‘black box’ approaches to modelling spectra,

and to allow the deconvolution of complex hyperspectral data it is necessary to develop a system that itself produces ‘rules’ that

are readily comprehensible. Evolutionary computation, and in particular genetic programming (GP), is an ideal method to

achieve this. An example of how GP can be used for Fourier transform infrared (FT-IR) image analysis is presented, and is

compared with images produced by principal components analysis (PCA), discriminant function analysis (DFA) and partial least

squares (PLS) regression.
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1. Introduction

Fourier transform infrared (FT-IR) and Raman are

vibrational spectroscopic techniques which measures

the absorbance of infrared light by molecules, or the

inelastic light scattered from molecules when they are

excited by a monochromatic light source [1,2]. These

non-destructive techniques are not biased to any par-

ticular group of chemicals and so give ‘holistic’ whole

organism or tissue fingerprints [3,4] of the biological

sample under investigation. Due to the rapidity with

which data can be collected, typified by the advent

of focal plane array detectors for FT-IR [5–7]

which allow infrared chemical maps of tissues to be

constructed in only a few minutes, these methods are

gaining considerable interest within high throughput

screening programmes, disease recognition and bio-

marker discovery in body fluids (for excellent reviews

see [8–12]).

Thus, it is possible to produce bounteous data

floods, and the extraction of the most meaningful

parts of these data is key to the generation of useful

new knowledge about the biological system under

interrogation. A typical FT-IR or Raman experiment

is expected to generate thousands of data points

(samples times variables) of which only a handful

might be needed to describe the problem adequately.

Evolutionary algorithms, and in particular genetic

programming (GP), are ideal strategies for mining

such data to generate useful relationships, rules and

predictions. This paper describes GP and highlights its
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exploitation in the analysis of vibrational spectro-

scopic data. An example of how this would be applied

to FT-IR imaging is also detailed.

2. Chemometric data analysis

Multivariate data such as those from an infrared or

Raman fingerprint consist of the results of observa-

tions on a number of individuals (objects, or samples)

of many different characters (variables, such as the

absorbance at different wavenumbers or wavenumber

shifts from a monochromatic light source for FT-IR

and Raman, respectively) [13]. Each variable may be

regarded as constituting a different dimension, such

that if there are n variables (wavenumbers) each object

may be said to reside at a unique position in an abstract

entity referred to as n-dimensional hyperspace [14].

This hyperspace is obviously difficult to visualise and

the underlying theme of multivariate analysis (MVA)

is thus simplification [15] or dimensionality reduction

[16]. In other words, one wants to summarise a large

body of data by means of relatively few parameters,

preferably the two or three which lend themselves to

graphical display, with minimal loss of information,

thereby allowing human interpretation.

Within chemometrics there are a variety of different

algorithms that are used to analyse multivariate data,

and by-and-large there are two main strategies used.

The first is based on unsupervised learning whilst the

second uses algorithms employing supervised learn-

ing.

2.1. Unsupervised learning

Unsupervised learning algorithms [17,18] seek to

answer the question ‘‘How similar to one another are

these samples (e.g. bacteria) based on their FT-IR or

Raman fingerprints I have collected?’’, and are based

on cluster analysis [15,19].

The reduction of the FT-IR or Raman data has

typically been carried out using principal components

analysis (PCA) [20] or hierarchical cluster analysis

(HCA) [21]. PCA is a well-known technique for

reducing the dimensionality of multivariate data

whilst preserving most of the variance, and is used

to identify correlations amongst a set of variables and

to transform the original set of variables to a new set of

uncorrelated variables called principal components

(PCs). These PCs are then plotted and clusters in

the data visualized; moreover this technique can be

used to detect outliers. In its more conventional form,

HCA employs a calculates distances (usually Eucli-

dean, but may be Mahanalobis or Manhattan) between

the objects in either the original data or a derivative

thereof (e.g. the PCs) to construct a similarity matrix

using a suitable similarity coefficient. These distance

measures are then processed by an agglomerative

clustering algorithm (although divisive algorithms

are also used) to construct a dendrogram.

Provided that the data set contains ‘‘standards’’ (i.e.

known things) it is evident that one can establish the

closeness of any unknown samples to a standard, and

thus effect the identification of the former, a technique

termed ‘operational fingerprinting’ by Meuzelaar et al.

[22] when analysing micro-organisms using pyroly-

sis–MS data. In post-genomics, such an approach is

being referred to as ‘guilt-by-association’ [23,24].

2.2. Supervised learning

The unsupervised methods detailed above, although

in some sense quantitative, are better seen as qualita-

tive since their chief purpose is merely to distinguish

objects or populations. Provided some ‘gold standard’

data exist on the objects being analysed, then a more

powerful approach is to use supervised learning tech-

niques (e.g. [18,25,26]) where one seeks to give

answers of biological interest which have much-lower

dimensionality, such as ‘‘Based on the FT-IR finger-

print of this new sample I have just collected, which

class in my database does it (most likely) belong to?’’

and/or ‘‘What is the level of toxicity this substance has

on this tissue culture?’’

The basic idea behind supervised learning is that

there are some patterns (e.g. FT-IR fingerprints) which

have desired responses which are known (i.e. the

identity of this micro-organism, which has been

decided by conventional approaches). These two types

of data (the representation of the objects and their

responses in the system) form pairs that are con-

ventionally called inputs (x-data) and outputs/targets

(y-data). The goal of supervised learning is to find a

model or mapping that will correctly associate the

inputs with the outputs (see Fig. 1 for a cartoon of this

process).
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Many different algorithms perform supervised

learning, and they are either based on (i) discriminant

algorithms, (ii) linear regression or (iii) non-linear

mapping.

(i) Discriminant analysis (DA) is a qualitative (i.e.

categorical), cluster analysis-based method that

involves projection of test data into cluster space

[21].

(ii) Although multiple linear regression (MLR) and

principal components regression (PCR) are

linear regression methods, the most popular

approaches are based on partial least squares

(PLS). PLS is a quantitative linear regression

method [13], and can be extended to discrimi-

nant PLS, which is a qualitative (categorical)

linear regression method [13,27].

(iii) However, arguably the most popular supervised

learning methods are based on artificial neural

networks (ANNs) which can learn non-linear as

well as linear mappings. The most popular

varieties are multilayer perceptrons (MLPs)

[28,29] and radial basis functions (RBFs)

[30–32].

The problem with the supervised learning algo-

rithms detailed above is that the mathematical trans-

formation from multivariate data to the target question

of interest is often largely inaccessible in DA, PLS,

and ANNs and these methods are often perceived as

‘black box’ approaches to modelling spectra, although

the analysis of loading vectors for DA and regression

coefficients for PLS can be informative. Indeed, for

PLS there have been some interesting developments

with respect to using orthogonal signal correction

(OSC) [33,34] for variable selection. We know from

the statistical literature that more robust predictions

can often be obtained when only the most relevant

input variables are considered [35,36]. Thus, the best

machine learning techniques should not only give the

correct answer(s), but also identify a subset of the

variables with the maximal explanatory power thereby

providing an interpretable description of what, in

biological terms, is the basis for that answer. Such

variable selection explanatory modelling methods

do exist and are based on rule induction [37,38],

inductive logic programming [39,40], and, in parti-

cular, evolutionary computation [41–43]. Thus, armed

with these algorithms one can start to seek the answer

to the question ‘‘What have I measured in my FT-IR or

Raman fingerprints that makes samples in class A

(normal tissue) different from samples in class B

(cancerous tissue)?’’

3. Genetic programming

Evolutionary computational-based algorithms are

particularly popular inductive reasoning and optimi-

sation methods [44,45] based on the concepts of

Darwinian selection [43] to generate and to optimize

a desired computational function or mathematical

expression to produce so called explanatory ‘rules’.

These techniques include genetic algorithms (GAs)

[41,46,47], evolution strategies (ESs) [48], evolutionary

Fig. 1. Supervised learning. When we know the desired responses (y-data, or targets) associated with each of the inputs (x-data, or FT-IR/

Raman spectra) then the system may be supervised. The goal of supervised learning is to find a mathematical transformation (model) that will

correctly associate all or some of the inputs with the targets. In its conventional form this is achieved by minimising the error between the

known target and the model’s response (output).
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programming (EP) [49] genetic programming [42,50]

and genomic computing (GC) [51,52]. Of particular

interest are GPs (and GCs which can be considered

synonymous) because of the rich language structure

used (vide infra), the models produced are in English,

and further by reducing complex expressions, may be

made to be comparatively simple thus allowing spec-

tral interpretation and deconvolution.

A GP is an application of the GA approach to derive

mathematical equations, logical rules or program

functions automatically [42,53–57]. Rather than

representing the solution to the problem as a string

of parameters, as in a conventional GA, a GP usually

[50] uses a tree structure that affords it a richer

language. The leaves of the tree, or terminals, repre-

sent input variables or numerical constants. Their

values are passed to nodes, at the junctions of branches

in the tree, which perform some numerical or program

operation before passing on the result further towards

the root of the tree (Fig. 2).

The overall evolutionary procedure employed by

GP is depicted in Fig. 3. An initial (usually random)

population of individuals, each encoding a function or

expression, is generated and their fitness to produce

the desired output is assessed. In the second popula-

tion, three reproduction strategies are adopted (see

Fig. 4 for pictorial details):

(A) Cloning allows some of the original individuals

to survive unmodified.

(B) New individuals are generated by mutation

where one or more random changes to a single

parent individual are introduced. This can be

when a node is randomly chosen, and modified

either by giving it a different operator with the

same number of arguments, or it may be

replaced by a new random sub-tree. Terminals

can be mutated by slightly perturbing their

numerical values, or randomly choosing a new

input variable.

Fig. 2. The language structure of a tree-encoded GP. (A) The building blocks are represented by termini (vibrational inputs or numbers), and

single input (a) and output nodes for encoding functions like log(a), 10(a), tanh(a) and other transcendental functions; two inputs (a and b) and

one output node for encoding the arithmetic functions a � b, a � b, a þ b, and a � b; and a four input-single output note encoding a

conditional ‘if–then–else’ statement; (B) shows a typical function tree.

Fig. 3. The overall procedure employed by GP. The criterion for a

good solution will be based on setting a threshold error between the

known target and the GP’s response.
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(C) New children are generated by crossover where

random rearrangement of functional components

between two or more parent individuals takes

place. Two parents are chosen with a probability

related to their fitness. A node is randomly

chosen on each parent tree, and the selected sub-

trees are then swapped.

The fitness of the new individuals in population

2 is assessed and the best individuals from the total

population become the parents of the next generation.

An individual’s fitness is usually assessed as the error

of the difference between expected values and the

GP’s estimated values for the training set. In order to

reduce ‘bloat’, a phenomenon in which the GP func-

tion tree gets so huge that it lacks explanatory power

[58,59], penalties to the number of nodes and depth of

the tree in the individual’s function tree can be

applied. This overall process is repeated until either

the desired result is achieved or the rate of improve-

ment in the population becomes zero. It has been

shown [42] that if the parent individuals are chosen

according to their fitness values, the genetic method

can approach the theoretical optimum efficiency for a

search algorithm, and EAs generally are guaranteed

to find the global optimum provided the best indivi-

duals are retained between generations (‘elitism’)

[60].

4. Application of GP to the interpretation of
vibrational spectroscopic data

GPs are very efficient search algorithms and

because of their variable selection capabilities (that

is to say, they extract the most relevant inputs and not

the noise) can be used to produce models that allow the

deconvolution of FT-IR and Raman data in chemical

terms. Detailed below are three published examples

from our laboratory illustrating this.

4.1. The detection of the dipicolinic acid

biomarker in Bacillus spores [61]

The rapid identification of Bacillus anthracis spores

is of importance because of its potential use as a

biological warfare agent [62,63]. GP was used to

analyse fingerprints generated from vegetative bio-

mass and spores of various bacilli using pyrolysis–MS

and FT-IR. Both fingerprinting approaches could be

used to differentiate successfully between vegetative

biomass and spores. GP produced mathematical rules

which could be simply interpreted in biochemical

terms. It was found that for pyrolysis–MS m/z 105

was characteristic and is a pyridine ketonium ion

(C6H3ONþ) obtained from the pyrolysis of pyri-

dine-2,6-dicarboxylic acid (dipicolinic acid, DPA), a

metabolite found in spores but not in vegetative cells.

Fig. 4. The GP reproduction processes, with examples of (A) cloning, (B) mutation and (C) crossover. Dotted lines on the parents denote

where the random mutation or crossover events occur.
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In addition, FT-IR analysis of the same system showed

that a pyridine ring vibration at 1447–1439 cm�1 from

the same metabolite, DPA, was found to be highly

characteristic of spores. Thus, although the original

datasets recorded hundreds of spectral variables from

whole cells simultaneously, a simple biomarker can be

used for the rapid and unequivocal detection of spores

of these organisms.

4.2. Monitoring of complex industrial

bioprocesses [64]

The ability to control industrial bioprocess is

paramount for product yield optimisation, and it is

imperative therefore that the concentration of the

fermentation product (the determinand) is assessed

accurately. Whilst infrared and Raman spectrosco-

pies have been used for the quantitative analysis of

fermentations [65–67] the transformation of spectra

to determinand concentration(s) has usually been

undertaken by PLS and ANNs, and one can not be

sure whether the model is detecting the product

itself, an increase in by-products or decrease in

substrates. By contrast, GP (and GA) has recently

been used to analyse IR and Raman spectra from

a diverse range of unprocessed, industrial fed-

batch fermentation broths containing the fungus

Gibberella fujikuroi producing the natural product

gibberellic acid. The models produced allowed

the determination of those input variables that con-

tributed most to the models formed, and it was

observed that those quantitative models were pre-

dominately based on the concentration of gibberellic

acid itself.

4.3. The detection of the microbial spoilage

of meat [68]

The rapid detection of microbial spoilage in meats

using FT-IR has only very recently been demonstrated.

Attenuated total reflectance (ATR) was used for ana-

lysis where the food sample was placed in intimate

contact with a crystal of high refractive index and an

IR absorbance spectrum collected in just a few sec-

onds. It was shown that FT-IR with PLS allowed

accurate estimates of bacterial loads (from 106 to

109 cm�2) to be determined directly from the chicken

surface in the 60s, and that GP (and GA) indicated that

at levels of 107 bacteria cm�2 the main biochemical

indicator of spoilage as measured by FT-IR was the

onset of proteolysis, a finding which is in agreement

with the literature [69–71].

5. The analysis of FT-IR images using GP

5.1. The discrimination of two closely related

Escherichia coli strains

Let us consider the following experiment, which

demonstrates the differentiation between closely

related bacteria, those of two laboratory strains of

E. coli HB101 [72] and UB5201 [73]. It is known that

these organisms are very closely related from previous

whole organism fingerprinting studies using pyroly-

sis–MS [74], and the FT-IR spectra (vide infra for

collection method) of E. coli HB101 and UB5201 do

indeed look very similar (Fig. 5).

5.2. Bacterial growth and spectral acquisition

Both strains were grown separately in 100 ml liquid

media (glucose (BDH),10.0 g; peptone (LAB M),

5.0 g; beef extract (LAB M), 3.0 g; H2O, 1 l) for

16 h at 37 8C in a shaker incubator. After growth,

the cells were harvested by centrifugation and washed

in physiological saline (0.9% NaCl). The dry weights

of the cells were then estimated gravimetrically and

used to adjust the weight of the final slurries with

physiological saline to approximately 40 mg ml�1;

this was �ð1�2Þ � 107 cells [74].

For the IR map the biomass from E. coli HB101

and UB5201 were applied evenly to the surface of

a 7 cm � 7 cm Al plate at a concentration of

�200 mg cm�2 (dry weight); a cartoon of a bacterial

cell was drawn with the different biomass (Fig. 6A).

Prior to analysis the sample carrier was oven-dried at

50 8C for 30 min. FT-IR spectra were acquired at a

spatial resolution of 1 mm (therefore, this data cube

was 71 pixels � 71 pixels, by 882 wavenumbers). The

FT-IR instrument used was the Bruker IFS28 FT-IR

spectrometer (Bruker Spectrospin Ltd., Banner Lane,

Coventry, UK) equipped with an mercury–cadmium–

telluride (MCT) detector (cooled with liquid N2) and a

motorised stage of a reflectance accessory, onto which

the Al plate was loaded. Spectra were collected over
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the wavenumber range 4000–600 cm�1. Spectra were

acquired at a rate of 20 s�1, the spectral resolution

used was 4 cm�1, and 16 spectra were co-added and

averaged.

5.3. ‘Classical’ analysis of IR chemical images

The traditional approach used to analyse FT-IR (and

indeed Raman) images from tissues or other materials

[5] has been to plot the area under specific peaks for

protein, lipid and polysaccharides. In order to com-

pensate for sample thickness effects it is often prudent

to plot the lipid-to-protein ratio. This was performed

for the E. coli map where the lipid-to-protein ratio was

calculated as the integration of the CH2 stretch

between 2912 and 2936 cm�1 divided by the integra-

tion of C=O vibration between 1651 and 1674 cm�1.

The resultant image is shown in Fig. 6B which bears

no resemblance to the real cartoon image shown in

Fig. 6A.

The approach of using spectral windows is a valid

one but presumes that one already knows which are the

important discriminative vibrations. Without this a

priori knowledge one can use a full spectral approach

and compress the data via PCA as demonstrated by,

e.g. [75]. This was performed on the E. coli map and

whilst there are some features in the first principal

component score (Fig. 7A), the two bacterial strains

cannot be differentiated, and neither were they in any

of the other PCs scores extracted (data not shown).

Therefore, since we have also collected spectra of the

E. coli HB101 and UB5201 it would seem sensible to

use a supervised method, and calibrate it with these

reference spectra. DA and ANNs have been used to

create chemical images from tissues [7,75]. Thus,

projection of the spectra from the E. coli image into

discriminant function analysis (DFA) space was per-

formed. Briefly, PCA followed by DFAwas carried out

on 14 spectra from E. coli HB101 coded as one group

and 14 of E. coli UB5201 coded as a separate class (8

PCs were extracted which explained 99.9% of the

variance). The spectra from the image were first

projected into the PCA space and then the resultant

PCs projected into the DFA space, and the first PC-DF

score was plotted (Fig. 7B). In the PC-DFA image it is

easier to differentiate between the two E. coli strains,

Fig. 5. Typical FT-IR spectra of Escherichia coli UB5201 and HB101 strains. Also highlighted are the wavenumbers selected by GP

analysis.
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however, the PC-DFA loadings are complex (Fig. 8A)

and no obvious spectral features were found to be

discriminating; although on closer inspection the

amide I band was found to be discriminating. PLS

was also performed on the 14 spectra from E. coli

HB101 coded as 1 and 14 of E. coli UB5201 coded as

0. The PLS model was calibrated with a single latent

variable and challenged with the spectra from the

image and the resultant predictions were plotted

(Fig. 7C). The PLS generated image was not as clear

as that produced from PC-DFA, which might be

because PLS uses a linear regression algorithm rather

than a discriminatory-based one. Inspection of the

regression coefficients from the PLS model (Fig. 8B)

were highly complex, with many input variables being

selected.

Fig. 6. (A) Cartoon of the original image and (B) the protein:lipid ratio of the 71 pixels � 71 pixels hypercube. The lipid-to-protein ratio was

calculated as the integration of the CH2 stretch between 2912 and 2936 cm�1 divided by the integration of C=O vibration between 1651 and

1674 cm�1.
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5.4. GP analysis of IR chemical images

The GP employed the Genomic Computing software

Gmax-bioTM (Aber Genomic Computing, Aberyst-

wyth, UK) which runs under Microsoft Windows

NT on an IBM-compatible PC. An introduction

to Gmax-bioTM is given elsewhere [51,52], and the

default parameter settings for population size (1000),

mutation and recombination rates were used through-

out. The operators that were used were þ, �, /, *,

log10(x), 10x, and tanh(x). The fitness calculation used

is F ¼ 1/(0:01 þ S/B) where the values of S and B are

determined by the FITNESS setting. In this expression,

S is a statistic derived from the model, which ranges

between 0 and infinity and B is a normalising quantity.

The value of B is chosen such that a perfect model

Fig. 7. Images produced from (A) PC scores showing PC 1 which explained 86.2% of the total variance, (B) PC-DFA projection analysis

showing PC-DF 1, (C) PLS predictions (UB5201 coded as 0 and HB101 as 1) and (D) GP analysis where the tree output ¼
ð3267 cm�1 � 3321 cm�1Þ � ð1636 cm�1=3182 cm�1Þ; for the GP UB5201 was also coded as 0 and HB101 as 1.
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yields F ¼ 100, and a model which performs no better

than random chance yields F ¼ 1.

The GP was calibrated with the same 28 spectra

from E. coli HB101 and UB5201 that were used for

PC-DFA, and the output for the GP for spectra from

UB5201 was coded as 0 and those from HB101 as 1.

After evolution the GP’s output was (3267 cm�1�
3321 cm�1) � (1636 cm�1/3182 cm�1), the outputs

for all 5041 spectra (71 pixels � 71 pixels) in the

E. coli map were calculated and plotted spatially

(Fig. 7D). It is obvious that the two strains are

clearly differentiated by the algebraic combination

of these four vibrations. The vibrations selected are

highlighted in Fig. 5 and it is likely that these all

arise from proteins: 1636 cm�1 is a C=O stretching on

the side of the amide I band, 3267 and 3321 cm�1

are on the O–H vibration, and 3182 cm�1 from N–H.

It is known that proteins rich in a-helix have an

amide I maximum at �1650 cm�1 and this shifts

to �1620 cm�1 for proteins rich in b-sheets [76].

Fig. 7. (Continued ).
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Since the side of the amide I band was chosen (rather

than the centre of the peak), in addition to the other

protein vibrations, suggests that the major difference

between E. coli HB101 and UB5201 is due to the

protein complement of these cells, rather than a

change in the polysaccharide or lipid components.

6. Concluding remarks

We are all hopefully aware of the cycle of knowl-

edge (Fig. 9) [52,77]. One has some preconceived

notions about the problem domain, experiments are

designed to test these hypotheses, the observations

from these experiments are recorded and by deductive

reasoning the observations considered to be consistent

or inconsistent with the hypotheses [78]. Actually,

although this part is normally only implicit, by a

process of induction these observations are synthe-

sised or generalised to refine our accepted wisdom.

The cycle then repeats itself until one is happy with the

solution to a given problem.

However, if one is in a scenario where our knowl-

edge is minute, e.g. that is to say we have no idea about

the biochemical or physiological differences between

two organisms. What are we to do? It is unreasonable

to go to the Sigma–Aldrich catalogue and collect the

spectra of every known metabolite (and although a

rather ‘stamp collecting’ exercise it is fair to say that

this would be a useful resource). Nevertheless, we can

design experiments based, for example, on whether

Bacillus is sporulated or exists as vegetative biomass,

collect ‘holistic’ whole organism fingerprints by FT-

IR or Raman spectroscopies and then use rule induc-

tion via evolutionary computation to elucidate what

are the key bond vibrations of the vibrational spectra

are important for the discrimination. Coupled to MS

and NMR, this will then give an insight into the sorts

of biochemical species (metabolites) that are impor-

tant, and help understand more fully the biological

system under investigation.
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Fig. 8. Loadings plots showing (A) PC-DF 1 loadings and (B) PLS
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Fig. 9. The cycle of knowledge, showing where rule induction will
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McGovern, B.K. Alsberg, D.B. Kell, N.A. Logan, Anal.

Chem. 72 (2000) 119–127.

[62] M. Dando, Biological Warfare in the 21st Century, Brassey’s

Ltd., London, 1994.

[63] W. Barnaby, The Plague Makers: The Secret World of

Biolgoical Warfare, Vision Paperbacks, London, 1997.

[64] A.C. McGovern, D. Broadhurst, J. Taylor, N. Kaderbhai,

M.K. Winson, D.A. Small, J.J. Rowland, D.B. Kell, R.

Goodacre, Biotechnol. Bioeng. 78 (2002) 527–538.

[65] A.C. McGovern, R. Ernill, B.V. Kara, D.B. Kell, R.

Goodacre, J. Biotechnol. 72 (1999) 157–167.

[66] A.D. Shaw, N. Kaderbhai, A. Jones, A.M. Woodward, R.

Goodacre, J.J. Rowland, D.B. Kell, Appl. Spectrosc. 53

(1999) 1419–1428.

[67] S. Vaidyanathan, G. Macaloney, B. McNeill, Analyst 124

(1999) 157–162.

[68] D.I. Ellis, D. Broadhurst, D.B. Kell, J.J. Rowland,

R. Goodacre, Appl. Environ. Microbiol. 68 (2002) 2822–

2828.

[69] R.H. Dainty, J. Food Microbiol. 33 (1996) 19–33.

[70] G.J.E. Nychas, C.C. Tassou, J. Food Microbiol. 74 (1997)

199–208.

[71] D.I. Ellis, R. Goodacre, Trends Food Sci. Technol. 12 (2002)

413–423.

[72] T. Maniatis, F. Fritsch, J. Shambrook, Molecular Cloning: A

Laboratory Manual, Cold Spring Harbour Laboratory, New

York, 1982.

[73] F. de la Cruz, J. Grinsted, J. Bacteriol. 151 (1982) 222–

228.
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