Supporting Information

Comparability of Raman Spectroscopic Configurations:
A Large Scale Cross-Laboratory Study

Shuxia Guo1,2, Claudia Beleites2,3, Ute Neugebauer1,2,4, Sara Abalde-Cela5, Nils Kristian Afseth6, Fatima Alsamad1, Suresh Anand7, Cuauhtemoc Araujo-Andrade8, Sonja Aškrabič9, Er tug Avci10, Monica Baia11, Malgorzata Baranska12,14, Enrico Baria15,16, Luis A. E. Batista de Carvalho17, Philippe de Bettignies18, Alois Bonfaccio10, Franck Bonnier21, Eva Maria Brauchle22,23, Hugh J. Byrne24, Igor Choupra24, Riccardo Cicchi8,16, Frederic Cuisinier25, Mustafa Culha11, Marcel Dahms1,2,4, Catalina David18, Ludovic Duponchel19, Shi yama Duraipandian24,26, Samir F. El-Mashtoly27,28, David I. Ellis29, Gauthier Epe30, Guillaume Falguyrac31,32, Ozren Gamulin33,34, Benjamin Gardner35, Peter Gardner29,36, Klaus Gerwert27,28, Evangelos J. Giamarellos- Bourboulis37, Sveinbjorn Gizurarson38, Marcin Gnyba39, Royston Goodacre40, Patrick Grysan41, Orlando Guntinas-Lichius42, Helga Helgadottir38, Vlata Mohaček Grošev34,43, Catherine Kendall44, Roman Kiselev2,45, Michal Kölbach46, Christoph Krafft2, Sivashankar Krishnamoorthy42, Patrick Kubryck46, Bernhard Lendl47, Pablo Loza-Alvarez9, Fiona M. Lyng24,26, Susanne Machill98, Cedric Malherbe30, Monica Marro49, Maria Paula M. Marques17,19, Ewelina Matuszyk14, Carlo Francesco Morasso50, Myriam Moreau19, Howbeer Muhamadali40, Valentina Mussi51, Ioan Notingher52, Marta Z. Pacia14, Francesco S. Pavone15,16, Guillaume Pene13,32, Dennis Petersen28, Olivier Pirot17,53, Julietta V. Rau54,55, Marc Richter46, Maria Krystyna Rybarczyk56, Hamideh Salehi29, Katja Schenke-Layland22,23, Sebastian Schlücker57, Markus Schosseler58, Karin Schütze59, Valter Sergio60,62, Faris Sinjab71, Janusz Smulko39, Ganesh D Sockalingum51,53, Clara Stiebing9, Nick Stone63, Valérie Untereiner64, Renzo Vanna65, Karin Wieland67, Jürgen Popp57,2, Thomas Bocklitz2,1,*

1. Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, 07743 Jena, Germany
2. Leibniz Institute of Photonic Technology Jena, Member of Leibniz Health Technologies, 07745 Jena, Germany
3. Chemometrix GmbH, Södeler Weg 19, 61200 Wölfersheim, Germany
4. Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
5. International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
6. Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-9291 Tromsø, Norway
7. Université de Reims Champagne-Ardenne, EA 7506 BioSpecT, 51 rue Cognacq-Jay, Reims, 51096 CEDEX, France
8. National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
9. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
10. Institute of Physics Belgrade, University of Belgrade, Studentski trg 1, Beograd, Serbia
11. Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, Kayişdağı, 34755 Ataşehir/Istanbul, Turkey
12. Faculty of Physics, Babes-Bolyai University, Strada Mihail Kogălniceanu 1, Cluj-Napoca 400084, Romania
13. Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
14. Jagiellonian Centre for Experimental Therapeutics (JCET), Michała Bobrzyńskiego 14, 30-348 Kraków, Poland
15. Department of Physics, University of Florence, Piazza di San Marco, 4, 50121 Firenze FI, Italy
16. European Laboratory for Non-linear Spectroscopy, Via Nello Carrara, 1, 50019 Sesto Fiorentino FI, Italy
17. University of Coimbra, “Molecular Physical Chemistry” R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
18. HORIBA France SAS, 231 Rue de Lille, 59650 Villeneuve-d’Ascq, France
19. Univ. Lille, CNRS, UMR 8516 - LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
20. Raman Lab, Dept. Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste TS, Italy
21. University of Tours, Faculty of pharmacy, EA6295 NanoMédicaments et Nanosondes, 60 Rue du Plat
22. NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770 Reutlingen, Germany
23. Department of Women’s Health, Research Institute of Women’s Health, Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
24. FOCAS Research Institute, Technological University Dublin, City Campus, Aungier St, Dublin, D02 HW71, Dublin 8, Ireland
25. LBN, University Montpellier, 641 Av. du Doyen Gaston Giraud, 34000 Montpellier, France
26. School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Kevin Street, Saint Peter’s, Dublin 2, D08 X622, Ireland
27. Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Gesundheitscampus 4, 44801 Bochum, Germany
28. Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
29. Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, M1 7DN, Manchester, UK
30. University of Liège, Mass Spectrometry Laboratory, MolSys Research Unit, Place du 20 Août 7, 4000 Liège, Belgium
31. Univ. Lille F-59000 Lille, France, Univ. Littoral Côte d’Opale, F-62300 Boulogne-sur-Mer, France, ULR 4490, MABLab, Marrow Adiposity and Bone Lab.
32. CHU Lille, 2 Avenue Oscar Lambret, F-59000 Lille, France
33. Department of Physics and Biophysics, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
34. Centre for Advanced Materials Science, Bijenička 54, 10000 Zagreb, Croatia
35. Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, Exeter, EX4 4Q, UK
36. Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester M1 3AL, UK
37. 4th Department of Internal Medicine, ATTIKON University Hospital, 1 Rimini Str, 12462 Athens, Greece
38. Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
39. Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
40. Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
41. Materials Research and Technology, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422, Belvaux, Luxembourg
42. Department of Otorhinolaryngology, Jena University Hospital, Bachstraße 18, 07743 Jena, Germany
43. Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
44. Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Leadon House, Great Western Rd, Gloucester GL1 3NN, UK
45. St. Jude Children’s Research Hospital, Memphis, 262 Danny Thomas Pl, Memphis, TN 38105, USA
46. Renishaw GmbH, Karl-Benz-Straße 12, 72124 Pliezhausen, Germany
47. Institute of Chemical Technologies and Analytics, TU Wien, 1040 Wien, Austria
48. Chair of Bioanalytical Chemistry, TU Dresden, 01062 Dresden, Germany
49. University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
50. Istituti Clinici Scientifici Maugeri IRCCS, Via Salvatore Maugeri, 10, 27100 Pavia PV, Italy
51. National Research Council, Institute for Microelectronics and Microsystems (IMM-CNR), Via del Fosso del Cavaliere, 100, 00133 Roma RM, Rome, Italy
52. School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
53. Université de Reims Champagne-Ardenne, PICT, 9 Boulevard de la Paix, 51100 Reims, France
54. Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
55. Sechenov First Moscow State Medical University, 119991, Moscow, Trubetskaya 8, build. 2, Russian Federation
56. Gdansk University of Technology, Chemical Faculty, 11/12 Narutowicza St., 80-233 Gdansk, Poland
Authors, except SG, CB, UN, JP, TB, are sorted alphabetically.
Corresponding author: *thomas.bocklitz@uni-jena.de

Table of contents

Table S1. Acceptable signal-to-noise ratio for specific band integral intensities across the at least 10 submitted spectra.
Table S2. Information of Raman spectroscopic devices within the trial.

Figure S1. Error in the measurement of the setup ID25.
Figure S2. Mean spectra and standard deviation spectra of agar.
Figure S3. Mean spectra and standard deviation spectra of gelatine.
Figure S4. Mean and standard deviation spectra, the representative Raman bands of paracetamol.
Figure S5. Mean and standard deviation spectra, the representative Raman bands of polystyrene.
Figure S6. Mean and standard deviation spectra, the representative Raman bands of cyclohexane.
Figure S7. Mean spectra and standard deviation spectra of the NeAr lamp.
Figure S8. Example of estimated SNR
Figure S9. Results of SNR for agar and gelatine.
Figure S10. Results of peak shifts for cyclohexane without and with wavenumber calibration.
Figure S11. Results of FWHM calculated from cyclohexane and NeAr.
Figure S12. Mean absolute deviation with respective to the nominal spectral resolution of different setups.
Figure S13. FWHM with respective to the nominal spectral resolution.
Figure S14. Results of the peak ratio between the cyclohexane peaks at 1444 and 801 cm⁻¹.

Design of the Ring Trial

We describe here the first round of a ring trial which was designed to assess the cross-setup comparability in Raman spectroscopy among a wide variety of laboratories in Europe. The samples consisted of well-known standards in Raman spectroscopy: a NeAr glow lamp, a paracetamol powder (also known as acetaminophen), a polystyrene petri dish, cyclohexane, and two biological example substances, agar and gelatine.

This selection was based on the following guiding principles:

- The NeAr glow lamp emits at well-known wavelengths [1, 2]. This allows to check the wavelength/wavenumber calibration of the spectrograph independently of the calibration of the excitation laser wavelength. In addition, the emission lines are very narrow: their line width is negligible compared to the spectral resolution of all participating instrument configurations (see Table S2). This allows to directly measure the instrument line shape and the spectral resolution of the spectrograph [3]. NeAr glow lamps are both readily available and give a large number of lines across the wavelength ranges covered by Raman spectrometers with excitation between 514 and 785 nm.

- Paracetamol, polystyrene and, if available, cyclohexane are widely-used standard substances for calibrating the spectral axis (wavenumber axis) of Raman spectrometers. They are also substances for verifying the wavenumber calibration
according to the European Pharmacopoeia [4] and ASTM E1840 [5]. Having more than one such substances allows to set up a wavenumber calibration based on one substance and assess the quality of the obtained calibration with the remaining substances. Paracetamol is polymorphic [6], and the Pharmacopoeia specifies that monoclinic paracetamol has to be measured [4]. Participants were shown Raman spectra of the monoclinic and orthorhombic modifications in the workshop that finalized the sample decisions and were reminded to not melt the sample as that may result in orthorhombic paracetamol.

- For cyclohexane the intensity ratios of the integral intensities of several bands are available in the literature [1, 2]. It can be considered to be intensity standard and used to assess how comparable spectra are in terms of the Raman intensities.
- Care was taken to select substances that do not show resonance enhancement with any of the excitation wavelengths in the participants’ Raman configurations.
- The ring trial samples should serve to assess the performance characteristics needed for both quantitative (regression) and qualitative (classification) biospectroscopic tasks.
- The optical configurations of the labs participating in Raman4clinics varied from highly confocal and high spatial resolution to the fiber-optic setups with lower spatial resolution. In this way, we expected to take into account the influence of instrumental configurations on the spectral reproducibility. We ensured that the samples were homogenous at these scales to allow instrument comparison across a wide range of spatial resolutions. To check any intensity variations in a dataset, an isotropic liquid like cyclohexane is the best choice, followed by the polystyrene petri dish (which is a clear substrate of sufficient size but it may exhibit local alterations due to the production process). The paracetamol powder with a crystal size that allows to measure a particular crystal face with high spatial resolution Raman configurations might be used as well. In addition, we chose agar and gelatine gels as example substances for biological materials. Both can be prepared as gels to be measured across the whole range of spatial resolutions. These two substances allow to benchmark the signal intensity and the signal-to-noise ratio for biological samples like bacteria, cells or tissues. With green excitation (514 and 532 nm), however, they exhibit a strong background and a Raman measurement will be successful only if it is performed fully confocal.
- In terms of the polarization, the participants’ instrument configurations also ranged from microscopic to fiber optical setups, which differed in their polarization dependency. The polarization effect is out of scope of our analysis.

Materials

NeAr glow lamps were purchased and already equipped with an appropriate resistor for 230V. As both electric safety regulations and plug standards vary across the participants’ countries, participants were asked to have a local electrician connection to the NeAr glow lamp according to the customs.

All portions of paracetamol were taken from the same batch of pharmaceutical grade paracetamol (Mallinckrodt Inc, USA/Caelo lot 15075707).
One batch of polystyrene petri dishes was used both as samples and containers for the other substances.

Agar (Kobe I Art.-Nr. 5210.2, Carl Roth, Germany, as 10 w% solution) and gelatine (bovine skin, type B, Sigma Germany, G9391-100G, lot SLBM7200V, as 20 % solution) were dissolved in distilled water under stirring for at least 1 h. To avoid contamination by growing microorganisms over time, the solution was sterilized in the autoclave. The sterilized solution was kept at 60°C to be handled further as homogenous liquid. It was pipetted into 2mL Eppendorf tubes under sterile conditions and allowed to cool down. Retained samples were stored at room temperature as sterilization check. A check after 4 weeks revealed no growing microorganisms, thus, samples were shipped sterile.

In addition, the participating labs were encouraged to measure and submit spectra of their own cyclohexane: due to transport restrictions on hazardous materials we decided to not ship cyclohexane.

Measurement Instructions to Participants

Since the participants’ instrument configurations varied widely, it did not make sense to prescribe excitation power and [total] exposure time. Participants were therefore instructed to select excitation power, exposure time, coadditions/average of spectra and objective and to report these parameters. We requested to upload at least 10 spectra with the integral intensity over a specific band having signal-to-noise ratio SNR (calculated as mean integral intensity divided by the standard deviation of integral intensity over the submitted spectra after local baseline correction, as defined by Eq. (S3.3)) better than a threshold which was pre-defined for each substance and each band, depending on red (630 – 785 nm) vs. green (514 – 532 nm) excitation, see table S1. The bands were selected to both have high intensity and be sufficiently separated from any other bands so that local baseline correction and band integral intensity could be calculated also for configurations with low spectral resolution.

Table S1: Acceptable signal-to-noise ratio for specific band integral intensities across the at least 10 submitted spectra

<table>
<thead>
<tr>
<th>Sample</th>
<th>band(s)</th>
<th>SNR 532 nm laser</th>
<th>SNR 785 nm laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeAr glow lamp</td>
<td>626.56 nm</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>878.2 nm</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>cyclohexane</td>
<td>801 cm⁻¹</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>paracetamol</td>
<td>1169 cm⁻¹</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>polystyrene (petri dish)</td>
<td>1451 cm⁻¹</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>gelatine</td>
<td>1220 – 1490 cm⁻¹</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>agar</td>
<td>970 cm⁻¹</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

These high SNRs were chosen on the one hand to allow data analyses which need high-quality spectra (e.g., measuring band positions and band widths). During the ring trial, some participants had difficulties in achieving this SNR with normal coadditions/averaging due to short-term fluctuations/intensity drift. We therefore relaxed the requirements and allowed participants to upload series of more spectra as long as coadding random spectra of the series lead to an SNR passing the limit across at least 10 such coadded spectra.
Spectral Pre-processing

Here we describe the details of the spectral pre-processing steps. To start, the spike removal was achieved via a comparison between every two Raman spectra from the same substance. Any spikes were detected where the Raman intensity of one spectrum is abnormally higher than it is for the other spectrum. The detected spike regions were replaced with the intensities of the other Raman spectrum after correcting the baseline offset. In the next step, a wavenumber calibration function was derived based on the spectra of paracetamol for each setup. To do so, the position of each known Raman band of paracetamol (see Figure S4 (b)) was estimated as the mean position of a Gaussian curve fitted from the neighborhood of this band. Thereafter, a third order polynomial was fitted between these measured band positions \(\tilde{\nu}_i \) and their correct values \(\tilde{\nu}_i^0 \) (Eq. (S1)). This calibration function was then interpolated onto the whole spectral region and used to calibrate the wavenumber axis for all substances: agar, gelatine, paracetamol, cyclohexane, and polystyrene. Thereafter, all spectra were interpolated to an equidistant wavenumber grid of 1 cm\(^{-1}\) and baseline corrected via the sensitive nonlinear iterative peak (SNIP) clipping algorithm [7]. In the end, we normalized the Raman intensities against the \(I_2 \) norm of the spectral region \(R: 730 \leq \nu \leq 1700 \) cm\(^{-1}\) (see Eq. (S2)).

\[
\nu_i^0(\tilde{\nu}_i) = a_0 + a_1 \cdot \tilde{\nu}_i + a_2 \cdot \tilde{\nu}_i^2 + a_3 \cdot \tilde{\nu}_i^3 \quad \text{Eq. (S1)}
\]

\[
I^n(\tilde{\nu}_i) = \frac{I(\tilde{\nu}_i)}{\sqrt{\sum_{j \in R} I(\tilde{\nu}_j)^2}} \quad \text{Eq. (S2)}
\]

Signal Noise Ratio

In the following, we formulated the three different calculations of the signal noise ratio in this project. Here we denoted a Raman spectrum and the estimated noise as \(I \) and \(I_n \), respectively. The terms \(I_i^p \) and \(A_i^p \) represent the integrated and maximal intensity of a specific Raman band \(p \) in the \(i^{th} \) spectrum, respectively. In particular, the SNR\(_1\) and SNR\(_2\) were used for the results shown in Figure 1 and S8, respectively, while SNR\(_3\) was calculated for presorting before being uploaded.

\[
\text{SNR}_1 = \frac{\text{mean}(I)}{\text{sd}(I_n)} \quad \text{Eq. (S3.3)}
\]

\[
\text{SNR}_2 = \frac{\text{mean}(I_i^p)}{\text{sd}(I_i^p)}, i = 1, 2, \ldots, 10 \quad \text{Eq. (S3.2)}
\]

\[
\text{SNR}_3 = \frac{\text{mean}(A_i^p)}{\text{sd}(A_i^p)}, i = 1, 2, \ldots, 10 \quad \text{Eq. (S3.1)}
\]
<table>
<thead>
<tr>
<th>Setup ID</th>
<th>Ex.(nm)</th>
<th>Resolution (cm(^{-1}))</th>
<th>Manufacture/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID01</td>
<td>514</td>
<td>4</td>
<td>Renishaw InVia</td>
</tr>
<tr>
<td>ID02</td>
<td>514</td>
<td>4</td>
<td>BWTek Alpha 300R</td>
</tr>
<tr>
<td>ID03</td>
<td>515</td>
<td>5</td>
<td>Horiba HR800</td>
</tr>
<tr>
<td>ID04</td>
<td>532</td>
<td>4</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID05</td>
<td>532</td>
<td>6.1</td>
<td>Horiba JobinYvon XploRA INV</td>
</tr>
<tr>
<td>ID06</td>
<td>532</td>
<td>3</td>
<td>Renishaw InVia</td>
</tr>
<tr>
<td>ID07</td>
<td>532</td>
<td>5</td>
<td>Thermo Fisher Scientific DXR TM</td>
</tr>
<tr>
<td>ID08</td>
<td>532</td>
<td>4</td>
<td>Horiba Aramis</td>
</tr>
<tr>
<td>ID09</td>
<td>532</td>
<td>5</td>
<td>Thermo Fisher Scientific DXR TM</td>
</tr>
<tr>
<td>ID10</td>
<td>532</td>
<td>10</td>
<td>Horiba XploRA INV</td>
</tr>
<tr>
<td>ID11</td>
<td>532</td>
<td>4.1</td>
<td>Horiba JobinYvon XploRA INV</td>
</tr>
<tr>
<td>ID12</td>
<td>532</td>
<td>1</td>
<td>Horiba JobinYvon Aramis</td>
</tr>
<tr>
<td>ID13</td>
<td>532</td>
<td>4</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID14</td>
<td>532</td>
<td>8</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID15</td>
<td>780</td>
<td>5</td>
<td>Thermo Fisher Scientific DXR TM</td>
</tr>
<tr>
<td>ID16</td>
<td>785</td>
<td>4</td>
<td>Horiba Aramis</td>
</tr>
<tr>
<td>ID17</td>
<td>785</td>
<td>4</td>
<td>Renishaw InVia</td>
</tr>
<tr>
<td>ID18</td>
<td>785</td>
<td>6</td>
<td>Witec Alpha 300RSA+</td>
</tr>
<tr>
<td>ID19</td>
<td>785</td>
<td>1.5</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID20</td>
<td>785</td>
<td>4.5</td>
<td>BWTek i-Raman +</td>
</tr>
<tr>
<td>ID21</td>
<td>785</td>
<td>4.5</td>
<td>BWTek i-Raman +</td>
</tr>
<tr>
<td>ID22</td>
<td>785</td>
<td>10</td>
<td>Horiba Micro HR</td>
</tr>
<tr>
<td>ID23</td>
<td>785</td>
<td>9</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID24</td>
<td>785</td>
<td>20</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID25</td>
<td>785</td>
<td>1.9</td>
<td>Horiba JobinYvon XploRA INV</td>
</tr>
<tr>
<td>ID26</td>
<td>785</td>
<td>6</td>
<td>Horiba JobinYvon HR800</td>
</tr>
<tr>
<td>ID27</td>
<td>785</td>
<td>4</td>
<td>Witec Alpha 300R</td>
</tr>
<tr>
<td>ID28</td>
<td>785</td>
<td>4</td>
<td>Renishaw InVia</td>
</tr>
<tr>
<td>ID29</td>
<td>785</td>
<td>2.4</td>
<td>Horiba JobinYvon XploRA INV</td>
</tr>
<tr>
<td>ID30</td>
<td>785</td>
<td>10</td>
<td>Horiba XploRA INV</td>
</tr>
<tr>
<td>ID31</td>
<td>785</td>
<td>9.5</td>
<td>Horiba JobinYvon XploRA INV</td>
</tr>
<tr>
<td>ID32</td>
<td>785</td>
<td>4</td>
<td>Kaiser RXN-2 Hybrid</td>
</tr>
<tr>
<td>ID33</td>
<td>785</td>
<td>5</td>
<td>Horiba HR800</td>
</tr>
<tr>
<td>ID34</td>
<td>785</td>
<td>1</td>
<td>Renishaw InVia</td>
</tr>
<tr>
<td>ID35</td>
<td>785</td>
<td>1</td>
<td>Renishaw InVia</td>
</tr>
</tbody>
</table>
Figure S1: Error in the measurement of the setup ID25. (left) Difference of each two subsequent wavenumbers, the pattern within the region of 1500-2600 cm⁻¹ shows irregular oscillation in the recorded wavenumber positions. (right) The irregular oscillation resulted in errors in the measured Raman intensities.
Figure S2: Mean spectra and standard deviation spectra of agar measured with different laboratory setups. For clarity the spectra are offset in the y-axis.
Figure S3: Mean spectra and standard deviation spectra of gelatine measured using different laboratory setups. For clarity the spectra are offset in the y-axis.
Figure S4: (a) Mean spectra and standard deviation spectra of paracetamol. For clarity the spectra are offset in the y-axis. (b) Enlarged representative spectra where the peaks used for the calculation of peak shifts are highlighted in green.
Figure S5: (a) Mean spectra and standard deviation spectra of polystyrene. For clarity the spectra are offset in the y-axis. (b) Enlarged representative spectra where the peaks used for the calculation of peak shifts are highlighted in green.
Figure S6: (a) Mean spectra and standard deviation spectra of cyclohexane. For clarity the spectra are offset in the y-axis. (b) Enlarged representative spectra where the peaks used for the calculation of peak shifts are highlighted in green.
Figure S7: Mean spectra and standard deviation spectra of the NeAr lamp. (a) Measurements on setup with 514/515/532 nm laser source. (b) Measurement with 785 nm laser source. The spectra were normalized against their respective maximum.
Figure S8: Example results for noise estimation. (a) An example spectrum from Agar before and after S-G smoothing. (b) Estimated noise. Please note the noise could be upper-biased within the spectral region with relatively sharp Raman bands.
Figure S9: Results of SNR for (a) agar and (b) gelatine. The colour shades represent the setups with different excitation wavelengths. The SNR is calculated from 10 spectra based on one single Raman band. The band used for this calculation is marked in the caption of both plots. Please note that the SNR here is calculated according to Eq. (S3.2), which is different to the SNR used for data pre-sorting (Eq. (S3.3)).
Figure S10: Results of peak shifts for cyclohexane without (a) and with (b) wavenumber calibration. The colour shades represent the setups with different excitation wavelengths. The wavenumber calibration was performed if there was paracetamol measured on the same setup. Therefore, less measurements are shown for the calibrated results than without wavenumber calibration.
Figure S11: (a) Results of FWHM calculated from cyclohexane based on the peak at 1028 cm\(^{-1}\). (b) Results of FWHM calculated from NeAr based on the emission lines at 626.56 and 878.2 nm for the laser sources at 514/532 and 785 nm, respectively. The colour shades represent the setups with different source wavelengths.
Figure S12: Mean absolute deviation with respect to the nominal spectral resolution of different setups. Rows (a-c) show results from paracetamol, polystyrene, and cyclohexane, respectively. The left and right columns give results without and with wavenumber calibration, respectively.
Figure S13: FWHM with respective to the nominal spectral resolution. The Raman band selected for the FWHM calculation was marked in the plots for each substance.
Figure S14: Results of the peak ratio between the cyclohexane peaks at 1444 and 801 cm\(^{-1}\). The curved arrows in brown show the paired results, pointing to the results with intensity calibration.
References